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Abstract

A new, high-order, conservative, and efficient method for conservation laws on unstructured grids is developed. It com-
bines the best features of structured and unstructured grid methods to attain computational efficiency and geometric flex-
ibility; it utilizes the concept of discontinuous and high-order local representations to achieve conservation and high
accuracy; and it is based on the finite-difference formulation for simplicity. Universal reconstructions are obtained by dis-
tributing unknown and flux points in a geometrically similar manner for all unstructured cells. Placements of these points
with various orders of accuracy are given for the triangular elements. Accuracy studies of the method are carried out with
the two-dimensional linear wave equation and Burgers’ equation, and each order of accuracy is verified numerically.
Numerical solutions of plane electromagnetic waves incident on perfectly conducting circular cylinders are presented
and compared with the exact solutions to demonstrate the capability of the method. Excellent agreement has been found.
The method is much simpler than the discontinuous Galerkin and spectral volume methods for unstructured grids.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

A current problem of great interest is to develop a numerical method for conservation laws with the fol-
lowing properties: that it be (a) conservative, (b) high-order accurate, (c) geometrically flexible, (d) computa-
tionally efficient, and (e) simply formulated. Simplicity and computational efficiency can be achieved using
structured grids. The earliest and most widely used method is the finite-difference (FD) method employing
a body-fitted curvilinear coordinate system [3,37], with the equations written in strong conservation law form
[39]. The spatial differencing is essentially one-dimensional, and carried out along coordinate directions. Thus
0021-9991/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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a large number of data points are ignored in high-order stencils. Near boundaries, the stencil has to be mod-
ified with one-sided formulas. Since numerical grid generators are mostly only second-order accurate, the
numerical differencing of grid point coordinates in evaluating metric terms can severely degrade the accuracy
of the solution if the grid is not sufficiently smooth. The unknowns are solution values at grid points. There-
fore the true integral conservation laws can only be satisfied to second-order accuracy. When a single struc-
tured grid is not feasible for very complex geometries, multi-block patched or overlapping grids are employed
[4]. At interface boundaries between patches, or in overlapped regions, the high accuracy is generally degraded
or sophisticated interface algorithms are needed.

In order to satisfy the integral conservation laws, finite-volume (FV) methods were developed, e.g. [29,19].
The unknowns are now cell averages over quadrilaterals (2D) or hexahedra (3D). A high order reconstruction
in terms of neighboring unknowns is used to calculate flux integrals over cell boundaries, using Riemann solv-
ers and appropriate limiters. In practice, the conventional finite-volume method for structured grids does not
overcome the limitations of the finite-difference method. The reconstruction is still one-dimensional along
coordinate directions. While geometric quantities such as surface area vectors or cell volumes can be precisely
calculated, flux integrals and volume integrals are usually evaluated by one-point quadratures, and are only
second-order accurate. Both methods suffer significant loss of accuracy for very unsmooth, highly curved
grids.

In order to achieve geometric flexibility along with high accuracy, we normally use an unstructured grid
consisting of triangles in 2D and tetrahedra in 3D. The most commonly used conservative unstructured
method is the finite-volume (UFV) method, applied to the integral form of the conservation law with cell aver-
ages of the conservative variables as the unknowns [2,13,26]. A polynomial reconstruction of any desired order
of accuracy for each cell is obtained in terms of unknowns at neighboring cells. The flux integral for each face
is evaluated using the reconstructed solutions from the two cells sharing the face and an approximate Riemann
solver. A quadrature approximation is employed for non-linear flux functions. Thus, conservation is satisfied
locally for each cell. However, due to the unstructured nature of the grid, it is difficult to obtain a non-singular
stencil [13]. This necessitates a least-squares inversion in general. For very high order of accuracy, the number
of cells, and thus the number of operations to carry out the numerical procedure, can become very large in
three dimensions. This would hamper the efficiency of the method. Furthermore, since each unknown employs
a different stencil, one must repeat the least-squares inversion for every cell at each time step, or must store the
inversion coefficients. In a high-order, three-dimensional computation, the former would involve impractically
large CPU times, while for the latter the memory requirement becomes prohibitive. In addition, the data from
neighboring cells required for the computation can be far apart in memory. This further degrades the efficiency
of the method due to data gathering and scattering. As a result of these deficiencies, the UFV method is lim-
ited to second-order accuracy in most applications.

An alternate method for unstructured grids is the finite-difference (UFD) method, applied to the differential
form of the conservation law with values of the conservative variables at grid nodes as the unknowns [8,1,36].
Actually, one only needs an arbitrary set of nodal points, without the connections that define a grid. Here one
employs a local polynomial reconstruction of the fluxes in terms of neighboring values determined by the
unknowns. The method is simpler than the UFV method, since one only needs to differentiate the recon-
structed solution. However, the UFD method has a major disadvantage of not being locally or globally
conservative.

Finite-element (FE) methods [18] have long been used for unstructured grids because of their geometric
flexibility. As in the unstructured FV method, the global domain is subdivided into triangular or tetrahedral
cells, called elements. A major difference between the FE and FV or FD methods is that in the former we
employ reconstruction data from within the element, while in the latter the reconstruction data comes from
outside the cell. In the FE formulation, the unknowns are nodal values at nodes which are placed at geomet-
rically similar points in each element. As a result, the local reconstructions become universal for all elements in
terms of the same set of cardinal basis functions or shape functions. By assigning a single value to the nodes on
element boundaries, a global reconstruction is now piecewise continuous. The conservation equations are then
satisfied in a weak form via the method weighted of residuals (MWR), by multiplying the equations with the
requisite number of test functions, integrating over the global domain, and using integration by parts. Usually
the Galerkin approach is used, in which the test functions are the same as the basis functions. This results in a
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set of coupled equations of all unknowns. Their solution involves a very large, sparse matrix, whose entries
depend on the element geometries. For non-linear equations, quadrature approximations are necessary to
evaluate the matrix entries. While the integral conservation law is satisfied for the global domain, it is not sat-
isfied for each element.

In practice, all the above methods normally employ relatively low-order approximations in their formula-
tions. We now turn to a class of methods called spectral methods which have the properties of very high accu-
racy and spectral (or exponential) convergence [14,5]. In traditional spectral methods, the unknown variable is
expressed as a truncated series expansion in terms of some basis functions (trial functions) and solved using
the MWR. The trial functions are infinitely differentiable global functions, and the most frequently used ones
are trigonometric functions or Chebyshev and Legendre polynomials. In the spectral Galerkin method the test
functions are the same as the trial functions, while in the spectral collocation method they are the translated
Dirac delta functions centered at so-called collocation points. There are two types of formulations. In the
modal formulation, the unknowns are the expansion coefficients. In contrast, for the nodal formulation,
the unknowns are the nodal values of the unknown variables at the collocation points. For the Galerkin
method, one can use either formulation. However, since the test functions and the trial functions are in general
orthogonal to each other only in the modal space, the modal formulation will result in an uncoupled system,
but not in the nodal formulation. For the collocation method, the nodal formulation is the more natural
choice, and it always results in an uncoupled system since the delta functions are used as the test functions.
For nonlinear fluxes, the pseudo-spectral method [30] is commonly used for computational efficiency, in which
fluxes are calculated at nodal points using the nodal values of unknowns. For the modal formulation, this
requires that unknowns and possibly their derivatives be first transferred to the nodal space, and then fluxes
are transferred back to the modal space to compute their derivatives. While the original formulations were
carried out in one dimension, their tensor products can be employed for problems in a simple multi-dimen-
sional rectangle or box.

One of the major shortcomings of the traditional spectral methods is their restriction to problems in simple
domains. Recent developments have extended these methods to multiple domains, including the spectral ele-
ment (SE) method [31,25] based on the Galerkin approach and the multi-domain spectral method [21–24,16]
based on the collocation approach. Domains containing general quadrilateral and hexahedral elements can be
handled by mapping the general elements to the standard elements using the conventional iso-parameteriza-
tion. The SE method has also been extended to triangular and tetrahedral elements [20].

The SE method can be viewed as a high-order FE method with the nodal points placed at proper locations
so that the spectral convergence can be obtained. In order to achieve local conservation for the FE or SE
methods, the discontinuous Galerkin (DG) method was developed [32,9–12,17]. Nodes on element boundaries
are allowed to have multiple values, so that the local reconstruction in each element is in general discontinuous
with that of its neighbors. The Galerkin MWR method is now applied locally to each element, using the local
shape functions. As in the unstructured FV method, a Riemann solver is employed at element boundaries to
compute the numerical fluxes. The integral conservation law is now satisfied for each element. While we must
still solve a large set of coupled equations, each set involves only the unknowns in a few neighboring elements.
Some of the integrals in the matrix entries involve quadratic terms. For non-linear flux functions, the required
quadrature formulas must have twice the degree of precision as the precision of the reconstruction. In order to
obtain stable and spectral convergence, unknowns for the DG method are normally placed at points where the
reconstruction matrix is optimized. One choice involves the Fekete points where the determinant of the recon-
struction matrix is maximized [38]. Other choices include points where the maximum Lebesgue constant of the
reconstruction matrix is minimized [6,7] or multivariate point sets through the electrostatic analogy [15]. In
general, these points may not provide the necessary precisions of quadrature approximations for the surface
and volume integrals, and one must therefore obtain solutions at other quadrature points through
interpolations.

The universal local reconstruction concept inherent in the FE method can be utilized to overcome the com-
putational inefficiencies of the more direct unstructured FV method. In the spectral volume (SV) method [40–
43,28], each triangular or tetrahedral cell, here called a spectral volume (SV), is partitioned into structured
subcells called control volumes (CV). These are polygons in 2D, and polyhedra in 3D. The latter can have
non-planar faces, which must be subdivided into planar facets in order to perform flux integrations. The
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unknowns are now cell averages over the CV’s. If the SV’s are partitioned in a geometrically similar manner, a
single, universal reconstruction results. Thus only a few coefficients need to be stored in advance to evaluate all
flux integrals. For high orders of accuracy in 3D, the partitioning requires the introduction of a large number
of parameters, whose optimization to achieve spectral convergence becomes increasingly more difficult. The
growth in the number of interior facets and the increase in the number of quadrature points for each facet,
raises the computational cost greatly. The computational cost of the SV method, and the difficulties in deter-
mining the parameters for spectral convergence, can both be significantly reduced if one were to apply the uni-
versal local reconstruction concept to the simpler unstructured FD method using nodal unknowns.

In this paper, we introduce a new, high-order, conservative, and efficient method, named the spectral dif-
ference (SD) method, for conservation laws on unstructured grids. The method combines the best features of
structured and unstructured grid methods to obtain computational efficiency and geometric flexibility. It uti-
lizes the concept of discontinuous and high-order local representations to achieve conservation and high accu-
racy in a manner similar to the DG and SV methods, but the new method is based on the finite-difference
formulation to attain a simpler form and higher efficiency. Specifically, the differential form of the conserva-
tion laws is satisfied at nodal unknown points, with flux derivatives expressed in terms of values at flux points.

The paper is organized as follows. In the next section, we first describe the basic formulation of the
method. Some representative placements of the unknown and flux points with various orders of accuracy
for triangular elements are then presented in Section 3. Accuracy studies of the method are carried out with
the two-dimensional linear wave equation and Burgers’ equation in Section 4. Each order of accuracy is
numerically verified with five unstructured grids of consecutive refinement. Numerical solutions of plane
electromagnetic waves incident on perfectly conducting circular cylinders are presented and compared with
the exact solutions also in Section 4. Finally, some concluding remarks and suggestions for future study are
given in Section 5.

2. The spectral difference method

2.1. General description

The SD method is a type of finite-difference method or nodal spectral method for unstructured grids, in
which inside each cell or element we have structured nodal unknown and flux distributions, in such a way that
the local integral conservation is satisfied. In considering the SV method, we note that the partitioning of grid
cells into subcells is dictated by the need to satisfy the integral conservation law for each cell in order to cap-
ture discontinuities. It is then natural to define cell averages of conservative variables as discrete unknowns.
But the accuracy of the flux integral for each grid cell is limited by the degree of precision of its reconstruction
from the discrete unknowns, and, for non-linear fluxes, the accuracy of the quadrature approximation. Thus
the integral unknowns can only be updated with an accuracy of a certain degree of precision. It is therefore
sufficient to define the conservative unknowns at quadrature points that will approximate the volume integral
over the cell to the desired order of accuracy. The unknowns are updated using the differential form of the
conservation law by approximating the flux derivatives at those points. In order to obtain the flux derivatives,
we use a polynomial reconstruction of the fluxes from their values at certain flux points. Consequently, we
refer to the method as a difference method. Most or all the flux points are located at surface quadrature points
that will approximate the flux integral over the grid cell surface to a desired order of accuracy.

In order to minimize the number of unknowns for a given accuracy, the unknowns are normally placed at
Gauss quadrature points, while the fluxes are placed at Gauss–Lobatto quadrature points. To evaluate the
fluxes, we require the values of unknowns (and their gradients) at flux points. They are obtained from a recon-
struction of unknowns using their values at unknown points. The procedure for computing fluxes and their
derivatives is similar to that in the pseudo-spectral method, the difference being that the reconstruction of
fluxes be one order higher than that of unknowns. On the other hand, in order to avoid an additional recon-
struction, one could place both the unknowns and fluxes at the same Gauss–Lobatto quadrature points. How-
ever, this would require using more unknowns to achieve a given accuracy. By placing the unknowns and
fluxes at the above quadrature points, one can obtain the spectral convergence and accuracy [5,20,22]. There-
fore, we also refer to the method as a spectral method.
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There are two important features of the method dealing with the relation of the numerical solution in dif-
ferent cells. If the nodes are distributed in a geometrically similar manner for all cells, the discretizations
become universal, and can be expressed as the same weighted sums of the products of the local metrics and
fluxes. These metrics are constants for the line, triangle, and tetrahedron elements, and can be computed ana-
lytically for curved elements. In this paper, our formulations are written in general vector forms valid for sim-
plex cells with straight edges and planar faces. Curved elements will be treated in subsequent papers. The other
feature concerns the fact that the flux at the surface points between two cells will in general be discontinuous.
In order to have local and global conservations, certain flux components must be continuous. We must there-
fore replace the fluxes at those points with numerical fluxes. The numerical fluxes serve to couple the solutions
in two neighboring cells and provide the necessary numerical dissipation to stabilize the numerical method.

2.2. Details of the spectral difference method

The most general form of a conservation law can be written as
ou
ot
þr � F ¼ 0; ð1Þ
where the conservative variable u can be a scalar or a vector, and the generalized flux F can be a vector or
tensor. The term $ * F represents the divergence or curl of F (* ” Æ or ·), depending on the physical definition
of u. The generalized Gauss theorem for a simplex element i can be written as
Z
V i

r � F dV ¼
Xdþ1

l¼1

Z
Sl

i

dS � F ; ð2Þ
where Vi is the volume of element or cell i, and Sl
i is the area vector of face l for cell i. (In 2D, each face is

actually a line.) Here d is the dimension of the domain, and the number of faces for each cell is d + 1. Inte-
grating (1) over cell i and substituting (2) into (1), we obtain the integral form of the conservation law
d

dt

Z
V i

udV þ
Xdþ1

l¼1

Z
Sl

i

dS � F ¼ 0. ð3Þ
In order to be consistent with future treatments of curved elements, we now introduce a local coordinate
system for each cell. We first choose an origin by assigning the index 0 to an arbitrary vertex and assign the
indices l = 1,d to the remaining vertices so as to define a right-handed system. Let rl,i be the position vector of
vertex l of cell i. The set of vectors
gl;i � rl;i � r0;i; l ¼ 1; d ð4Þ
form a covariant basis defining the local coordinates xl, as shown in Fig. 1. The position vector r of any point
in cell i is then given by
r ¼ r0;i þ
Xd

l¼1

xlgl;i; 0 6 xl
6 1 and

Xd

l¼1

xl
6 1. ð5Þ
0 1

2

g1

a1

a2

S1

S2

V

τ = 2V

g2

(0,0) (1,0)0 1

2

x1

x2
(0,1)

Fig. 1. Transformation of a physical element to the standard element.
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In order to obtain a single formulation valid for all dimensions d, we introduce the vector g2,i as a unit vector
normal to g1,i for d = 1, and g3,i as the unit vector in the direction of g1,i · g2,i for d = 1 and 2. We then define
a1
i � g2;i � g3;i;

a2
i � g3;i � g1;i;

a3
i � g1;i � g2;i

ð6Þ
and
si � g1;i � g2;i � g3;i. ð7Þ
Vectors al
i , l = 1,d, form another set of basis vectors with al

i=sið¼ gl
iÞ being the contravariant basis vector of

gl,i. Geometrically, al
i and si are related to the surface areas Sl

i and cell volume Vi of the cell (simplex with
straight edges and planar faces) by
al
i ¼ �ððd � 1Þ!ÞSl

i ð8Þ

and
si ¼ ðd!ÞV i. ð9Þ

Since r �

Pd
l¼1gl

i
o

oxl, we now can write $ * F in each cell in terms of the local coordinates xl and the basis
vectors al

i as
r � F ¼ 1

si

Xd

l¼1

al
i �

oF
oxl

; ð10aÞ
or in the conservative form
r � F ¼ 1

si

Xd

l¼1

oðal
i � F Þ
oxl

. ð10bÞ
The form (10b) is necessary when treating curved elements. We will seek finite-difference approximations to
Eqs. (10) in terms of metric and flux values at flux points. Here, instead of adopting the conventional mul-
ti-dimensional Taylor series expansion approach, we will employ a more general approach using reconstruc-
tion. Although both approaches result in the same difference operators for non-singular systems, the latter is
capable of handling over-specified systems.

In each cell, the discrete unknowns are the values of u at quadrature points for the volume integral over the
cell. We denote these points, some of which may lie on the cell faces, as rj,i, and define
uj;i � uiðrj;iÞ. ð11Þ

We also denote by x the local position vector in the transformed ‘‘Cartesian’’ space defined by the coordinates
xl. If the points rj,i are distributed in a geometrically similar manner for all cells, they all have the same local
position xj. Therefore, we can rewrite Eq. (11) as
uj;i ¼ uiðxjÞ. ð12Þ

In order to reconstruct u within each cell, we introduce a set of complete polynomials /n(x) of degree p and

expand ui(x) in the ith cell as
uiðxÞ ¼
XNd

p

n¼1

cn;i/nðxÞ. ð13Þ
Here
Nd
p ¼
ðp þ dÞ!

p!d!
¼

ðp þ 1Þ d ¼ 1;

ðp þ 1Þðp þ 2Þ=2 d ¼ 2;

ðp þ 1Þðp þ 2Þðp þ 3Þ=6 d ¼ 3.

8><
>: ð14Þ
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Eq. (12) can then be written as
uj;i ¼
XNd

p

n¼1

Rjncn;i; ð15Þ
where
Rjn ¼ /nðxjÞ. ð16Þ
One requires N d
p point values in each cell i to reconstruct a degree p polynomial if the resulting reconstruction

matrix Rjn is non-singular. The elimination of the coefficients cn,i in Eq. (15) can be shown succinctly using
matrix algebra. Let ci, ui, and /(x) be algebraic vectors with components cn,i, uj,i, and /n(x), respectively,
and let R be the matrix with elements Rjn. Eqs. (13) and (15) can then be written as
uiðxÞ ¼ /TðxÞci ð17Þ
and
ui ¼ Rci. ð18Þ
Since xj are the same for all cells and therefore so is R, it is now clear that the reconstruction becomes uni-
versal. Eliminating ci, we obtain
uiðxÞ ¼ LðxÞui; ð19Þ
where
LðxÞ � /TðxÞR�1. ð20Þ
In order to evaluate the surface integrals in (3) efficiently, we discretize F at points rk,i, most or all of which
are located at quadrature points for those integrals. Since the flux derivatives are used to update the conser-
vative unknowns, the flux points should support a polynomial reconstruction of degree p + 1. A similar pro-
cedure is used for the reconstruction of F. As in the case for the unknown points rj,i, if the flux points rk,i are
distributed in a geometrically similar manner for all cells, they all also have the same local position xk. This
also leads to a universal reconstruction for F.

There are possible circumstances in which the reconstruction matrix for u or F is singular. In such a case, we
can choose a different set of points or simply add additional points, generally one point at the centroid of the
cell, to remove the singularity. For the latter, we then use a least-squares method, the same one used in the
UFV method, for the reconstruction. All the equations above are still valid, except R�1 is now replaced by
the pseudo-inverse R+. Although the matrix R can be ill-conditioned, we use Mathematica [44] to obtain its
inverse or pseudo-inverse analytically.

Let Nu be the number of unknown points in each cell. Eq. (19) can then be written in an expanded form
uiðxÞ ¼
XNu

j¼1

LjðxÞuj;i. ð21Þ
Here the functions Lj(x), which are the components of the algebraic row vector L(x), are known as shape func-
tions. The locations of xj then uniquely define the basis Lj(x). Similarly, let NF be the number of flux points in
the cell and define
F k;i � F iðrk;iÞ ¼ F iðxkÞ; ð22Þ
the expansion of F can also be written as
F iðxÞ ¼
XNF

k¼1

MkðxÞF k;i. ð23Þ
Here Mk(x) are now the set of shape functions defined by the xk. Using Eq. (10), we can satisfy (1) at points rj,i

by evaluating
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r � F ðrj;iÞ ¼
1

si

Xd

l¼1

al
i �
XNF

k¼1

mjk;lF k;i ð24aÞ
or
r � F ðrj;iÞ ¼
1

si

Xd

l¼1

XNF

k¼1

mjk;la
l
i � F k;i; ð24bÞ
whichever is more efficient. The coefficients
mjk;l ¼
oMkðxjÞ

oxl
ð25Þ
are universal constants. In order to evaluate Fk,i, uk,i is required, which can be obtained directly from (21) as
uk;i ¼
XNu

j¼1

lkjuj;i; ð26Þ
where
lkj ¼ LjðxkÞ ð27Þ

are also universal constants. To reduce the cost of interpolation (26), some of the points rk,i may be chosen to
coincide with rj,i. There are only a few of these coefficients in (25) and (27), which can be calculated exactly and
stored in advance.

For those points rk,i located on the cell faces, since u may be discontinuous, the fluxes at those points are
not uniquely defined. As a result, we must replace the fluxes with ‘‘numerical fluxes’’, which can be computed
using exact or approximate Riemann solvers, e.g. [33,34]. These numerical fluxes are responsible for coupling
the solutions in two adjoining cells and providing the necessary numerical dissipation to stabilize the numer-
ical method. Note that in a finite volume method, only the normal component (n Æ F) or the tangential com-
ponent (n · F) of the flux is used in the formulation. In the SD method, the full flux vectors at all the flux
points are necessary to update the solution unknowns. However, to satisfy local conservation, the same nor-
mal or tangential components must be used on the two cells sharing a common face. In order to describe how
the numerical fluxes are computed, refer to Fig. 2, in which flux points are further classified as corner points or
face points. If the underlying physics of the conservation laws is a simple uni-directional wave in the direction
l, an ‘‘exact’’ multi-dimensional Riemann solver can be used to determine the common flux independent of the
computational mesh. For example, for both the corner and face points, we need to first identify the cell where
the wave is coming from. For the face point shown in Fig. 2, the cell is D, and for the corner point, the cell is
A. Then the numerical flux vector at the face or corner points are replaced with the flux vector computed based
on the interpolated state variable from the identified cell, i.e., cell D for the face point and face A for the corner
A
B

C

D

E

l

l

Fig. 2. Flux computation for a corner (s) and a face (h) point using a multi-dimensional Riemann solver.
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point. For complex systems of conservation laws, it may be impossible to decompose the physics into that of
simple waves. In such cases, approximate Riemann solvers are employed to compute the numerical flux. Con-
sider cell C in Fig. 3. For the face flux point, the outgoing face normal is n1. In the case of divergence (* = Æ),
the normal component of the flux vector can be computed with any 1D Riemann solver. However, we have the
complete freedom in how to determine the tangential component of the flux vector at the face point since it
does not affect the conservation property. In fact, it is not strictly necessary to have a unique tangential com-
ponent physically at the face point (e.g. a contact discontinuity in which density is discontinuous). Here we
offer two choices. One is to use a common tangential component by averaging the two tangential components
from both sides of the face. The other choice is to use its own tangential component from the current cell,
allowing the tangential component to be discontinuous. For the corner point, two normals (n1,n2) can be
defined, i.e., n1 pointing from cell C to cell 1 and n2 from cell C to cell 2. Two 1D Riemann solvers are then
used to compute the fluxes in n1 and n2 directions, F n1

and F n2
. The full flux vector can be solved directly from

F n1
and F n2

. Similar procedures can be used for the case of curl (* = ·), in which the tangential components of
the flux vectors are computed with a 1D Riemann solver.

Quadrature approximations to integrals over simplexes of various degrees of precision can be obtained
using Table 1 of [27]. If one chooses unknown locations rj,i and corresponding weights that yield an approx-
imation of degree of precision of at least p for the volume integral, and flux locations rk,i and corresponding
weights that yield an approximation of degree of precision of at least p + 1, then the integral conservation (3)
will be satisfied locally to the order of accuracy of the method. One can also choose the locations rj,i and rk,i to
yield quadrature approximations of even higher degrees of precision. We can further place rj,i and rk,i such that
the local integral conservation (3) is exactly satisfied numerically. Using a quadrature approximation, the vol-
ume integral can be written as
Z
V i

r � F dV ¼ V i

XNu

j

wjr � F ðrj;iÞ. ð28aÞ
Here wj are the volume quadrature weights at the points rj,i. Substituting (8), (9), and (24) into the above equa-
tion, one obtains
Z
V i

r � F dV i ¼ �
1

d!

Xd

l¼1

XN F

k¼1

XNu

j¼1

wjmjk;lS
l
i � F k;i. ð28bÞ
Similarly, the surface integral of F can be expressed as
Xdþ1

l¼1

Z
Sl

i

dS � F ¼
Xdþ1

l¼1

X
k

wkSl
i � F k;i. ð29Þ
2

C

1

n1

n2

n1

Fig. 3. Flux computation for a corner (s) and a face (h) point using a one-dimensional Riemann solver.
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Here wk are surface quadrature weights for face l, and for each face the summation is over those points
rk,i located on that face. In order that the local integral conservation (3) is exactly satisfied numerically,
Eq. (28b) and the resulting equation of (29) using the relation

Pdþ1
l¼1 Sl

i ¼ 0 must have the same coefficient
for each Fk,i. In particular, the total contribution from any interior point Fk,i to the volume integral in
(28) must vanish.

The SD formulation for the line element is similar to the multidomain spectral method. Here the distribu-
tions of u and F points are based on those quadrature points that lead to the satisfaction of the integral form
of the conservation law. Since this does not define a unique set of locations, they can be optimized by mini-
mizing some object functions. The tensor products of the line formulation can be used for quadrilateral and
hexahedral cells or elements.

From (24) and (26), we also see that the SD formulation is very similar to that of the FD method for struc-
tured grids. The SD method thus retains the simplicity and computational efficiency of the structured FD
method. However, the metric terms in the latter are evaluated by numerically differencing the grid point coor-
dinates. Since numerical grid generators are mostly only second-order accurate, the overall accuracy of the
solution can be severely degraded if the grid is not sufficiently smooth. In contrast, the metric terms in the
SD method are computed exactly from the geometry of the grid, no matter how it was generated. It thus
retains its formal accuracy, even for very unsmooth unstructured grids. Furthermore, in contrast to the FD
method, the integral conservation law is satisfied to the desired accuracy. In the remainder of the paper, we
limit ourselves to triangular grids. Tetrahedral grids will be treated in subsequent papers.

3. Locations of the unknown and flux points for triangles

3.1. General criteria

The critical part of the SD method is the location of the u points rj,i and F points rk,i. If those points
are distributed in a geometrically similar manner for all cells, the formulas for the flux derivatives become
universal, and can be expressed as the same weighted sums of the products of the local metrics and fluxes.
The locations of the u and F points are determined by symmetry groups associated with the cell centroid,
vertices, and edges. All but the first contain arbitrary parameters that can be varied to obtain optimum
solutions. The number of points required for a reconstruction with a specified degree of precision is
greater than the minimum number of Gaussian quadrature points for that precision. One can obtain
greater efficiency by locating some u points on the cell boundary, to coincide with F points, and utilizing
a Gauss–Lobatto quadrature formula. For F points on the vertices (2D and 3D) and edges (3D), more
than one Riemann solver is necessary. For those formulations with expensive Riemann solvers, these
points should be minimized. Another criterion for the placement of u or F points is that the reconstruc-
tion matrix should be non-singular if possible. If additional points are needed, the rank of the reconstruc-
tion matrix must be the same as the number of basis functions used. Even in this case, we can show that
the number of F points is far less than the number of flux quadrature points in the SV method with the
same accuracy. The final criterion is that integral conservation is satisfied within the desired degree of
precision.

3.2. Symmetry groups

We first describe symmetry groups for a triangle, as discussed in [27]. While in Section 2 subscripts were
used as generic indices for cells and u and F points, in this section they will indicate vertices and edges for
a given triangle. A single subscript will refer to a vertex, while a double subscript will refer to an edge. The
symmetry is most clearly evident when viewed from the centroid of the triangle. We will therefore find it useful
to characterize the symmetry groups in terms of parameterizations based on the centroid.

Let rm be the position vector of vertex m. Then its position vector with respect to the centroid is defined as
�rm � rm � rc; ð30Þ

where the centroid rc is given as
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rc ¼ 1

3

X
m

rm. ð31Þ
The first symmetry group consists of the centroid rc. This group is necessary when the total number of points
supporting a polynomial is not divisible by 3. The second symmetry group consists of the three one-parameter
vertex-based points
�ra
m � a�rm � 1

2
6 a 6 1; a 6¼ 0

� �
. ð32Þ
a = 1 corresponds to the vertex, while a = �1/2 is the midpoint of the opposite edge. a = 0 corresponds to the
centroid, and therefore must be excluded from this symmetry group. The third symmetry group consists of the
six two-parameter edge-based points
�rcd
mn � c�rm þ d�rn ðm 6¼ n; c 6¼ d 6¼ 0Þ ð33Þ
for edge mn connecting vertices m and n. To exclude points which are already in the first two groups, c and d
must not equal zero, and m must not equal n. We must also exclude the special case c = d, since this is already
covered by the vertex-based group. It is easy to show that the values of c and d in the c � d plane are restricted
to the triangle determined by the points (0,1), (1, 0), and (�1,�1) in order for the points to lie within the tri-
angle. When c + d = 1, the points lie on the edge mn. This special group plays an important role in the loca-
tions of the F points, which are found primarily on the edges of the triangle.
3.3. Representative placements of u and F points

Eq. (14) gives the minimum number of points required in a reconstruction that supports a polynomial of
degree p. If the u points support a polynomial of degree p, the F points should support a polynomial of degree
p + 1, and the order of accuracy of the method is p + 1. While the accuracy of the SD method depends on the
locations of u and F, here we present only some representative placements of u and F points that satisfy the
integral conservation law, for various orders of accuracy. These placements do not necessarily represent
the best choices, but they do show the orders of accuracy as claimed in our numerical tests. The placements
of the points are shown geometrically in Fig. 4, with u in circles and F in squares. The corresponding vectors
gl, al, and Sl (not scaled), and scalars V and s are depicted in Fig. 1. Numerical values for the coefficients lkj

and mjk,l are presented for some first and second-order accuracy placements. Due to space limitation, the val-
ues for other placements can be obtained by contacting the first author. The optimization of the locations will
be studied in the future.

3.3.1. First-order accuracy

From (14) it follows that we need one u point and three F points. The u point is at the centroid (volume
quadrature weight w = 1). There are two possibilities for the F points. They can be located at the edge mid-
points (a ¼ � 1

2
, and surface quadrature weight w = 1) defining placement 1a shown in Fig. 4a, or at the ver-

tices ða ¼ 1; w ¼ 1
2
Þ, defining placement 1b shown in Fig. 4b. For a piecewise constant reconstruction, the u at

any point is simply the u at the centroid, and thus for both the placements
u1

u2

u3

2
64

3
75 ¼ ua. ð34Þ
We can also show that
½r � F a�s ¼ 2 �2 0½ �
a1 � F 1

a1 � F 2

a1 � F 3

2
64

3
75þ 2 0 �2½ �

a2 � F 1

a2 � F 2

a2 � F 3

2
64

3
75 ð35aÞ
for the placement 1a, and



Fig. 4. Placement of unknown (d) and flux (j) points for a triangular element. First order: (a)–(b); second order: (c)–(e); third order: (f);
fourth order: (g).
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½r � F a�s ¼ �1 1 0½ �
a1 � F 1

a1 � F 2

a1 � F 3

2
64

3
75þ �1 0 1½ �

a2 � F 1

a2 � F 2

a2 � F 3

2
64

3
75 ð35bÞ
for the placement 1b. Using Eqs. (35) and the corresponding volume and surface quadrature weights, one can
easily verify that Eqs. (28) and (29) yield the same form and thus the local integral conservation is exactly
satisfied numerically. In addition, one can show that Eqs. (35) also satisfy the geometrical conservation by
assuming a uniform F field. Since u is a constant inside each cell, except at boundaries, both placements actu-
ally produce the same solution. Furthermore, for the first-order accuracy, the UFV, DG, SV, and SD methods
all yield exactly the same formulation.

3.3.2. Second-order accuracy

For the second-order accuracy, we now need three u points and six F points. We can place all six F points
on the edges to obtain higher accurate surface quadrature approximations. The first choice involves two ver-
tex-based symmetry groups, three points at the vertices ða ¼ 1; w ¼ 1

6
Þ, and three points at the edge midpoints

ða ¼ � 1
2
; w ¼ 4

6
Þ. The surface quadrature approximation for this placement corresponds to the fourth-order

Simpson rule. The three u points involve one vertex-based group. There are two Gaussian placements, both
giving third-order accuracy for the volume quadrature formula. In placement 2a, shown in Fig. 4c, the u
points are given by ða ¼ 1

2
; w ¼ 1

3
Þ, and in placement 2b, shown in Fig. 4d, the u points are at the edge mid-

points ða ¼ � 1
2
; w ¼ 1

3
Þ. Note that in placement 2b the u points coincide with 3 of the F points, reducing the

number of interpolations. For the placement 2a,
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u1

u2

u3

u4

u5

u6

2
666666664

3
777777775
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5
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� 1

3

� 1
3
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3
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3

� 1
3
� 1

3
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3

5
3
� 1

3
� 1

3
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3

2
3
� 1

3

2
666666664

3
777777775

ua

ub

uc

2
64

3
75 ð36aÞ
and
r � F a

r � F b

r � F c

2
64

3
75s ¼

� 1
3

2
3

0 � 2
3
� 5

3
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5
3
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3
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3
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3

8
3

0 � 8
3
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3
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64

3
75
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2
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3
777777775
þ

0 2
3
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3
2 � 5

3
� 2

3

0 8
3
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3
0 1

3
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3

0 2
3
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3
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3
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3

2
64

3
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2
666666664

3
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ð36bÞ

and for the placement 2b,
u1

u2

u3

u4

u5

u6

2
666666664

3
777777775
¼

1 �1 1

1 0 0

1 1 �1

0 1 0

�1 1 1

0 0 1

2
666666664

3
777777775

ua

ub

uc

2
64

3
75 ð37aÞ
and
r � F a

r � F b

r � F c

2
64

3
75s ¼

1 2 0 �2 1 �2

�1 2 0 �2 �1 2

1 0 0 0 �1 0

2
64

3
75

a1 � F 1

a1 � F 2

a1 � F 3

a1 � F 4

a1 � F 5

a1 � F 6

2
666666664

3
777777775
þ

0 2 1 �2 1 �2

0 0 1 0 �1 0

0 2 �1 2 �1 �2

2
64

3
75

a2 � F 1

a2 � F 2

a2 � F 3

a2 � F 4

a2 � F 5

a2 � F 6

2
666666664

3
777777775

.

ð37bÞ

If we move the F points to the Gaussian points on the edges c ¼ 3þ

ffiffi
3
p

6
; d ¼ 3�

ffiffi
3
p

6
; w ¼ 1

2

� �
in order to minimize

the Riemann solver calls, the result is a singular matrix. The singularity can be removed by adding an F point
at the centroid, and this defines the placement 2c as shown in Fig. 4e. This placement requires a least-squares
inversion to obtain a reconstruction for F. Again, all three placements satisfy the local integral conservation
and geometrical conservation.

3.3.3. Third-order accuracy

We now need 6 u points and 10 F points. The u points can consist of one edge-based symmetry group or two
vertex-based symmetry groups. However, the former would be singular and the latter are just sufficient for a fifth-

order Gaussian volume quadrature formula if we choose a1 ¼ �10þ5
ffiffiffiffi
10
p
þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
950�220

ffiffiffiffi
10
pp

30
and a2 ¼ �10þ5

ffiffiffiffi
10
p
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
950�220

ffiffiffiffi
10
pp

30
.

The corresponding weights are w1 ¼ 5a2�2
60a2

1
ða2�a1Þ

and w2 ¼ 5a1�2
60a2

2
ða1�a2Þ

. The F distribution requires a point at the cen-

troid. The remaining 9 points can be most efficiently distributed at Gauss–Lobatto points on the edges, involving
one vertex-based group ða ¼ 1; w ¼ 1

12
Þ, and one edge-based group ðc ¼ 5þ

ffiffi
5
p

10
; d ¼ 5�

ffiffi
5
p

10
; w ¼ 5

12
Þ. The resulting

placements are shown in Fig. 4f.
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3.3.4. Fourth-order accuracy

We need 10 u points and 15 F points. One u point is located at the centroid. The remaining 9 points can be
satisfied by three vertex-based groups. Unfortunately this results in a singular matrix. We therefore need one
edge-based group and one vertex-based group for the u points. In our initial study, ðc ¼ 5

12
; d ¼ 1

6
Þ were used

for the edge-based group, and ða ¼ 3367þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
14205289
p

7584
Þ was used for the vertex-based group. These parameters were

derived from Table 1 of [27] for a fifth-order volume quadrature. The 15 F points could all be located on the
edges of the triangle, but this again results in a singular matrix. We therefore need at least one symmetry group
for F whose points lie in the interior. Here we arbitrarily chose one vertex-based group with ða ¼ 1

2
Þ. Again, the

remaining 12 points can be most efficiently distributed at Gauss–Lobatto points on the edges, involving two

vertex-based groups (a = 1) and ða ¼ � 1
2
Þ, and one edge-based group ðc ¼ 7þ

ffiffiffiffi
21
p

14
; d ¼ 7�

ffiffiffiffi
21
p

14
Þ. The resulting

placements are shown in Fig. 4g. We would like to emphasize that this initial choice is by no means an
optimum choice. Nevertheless, it does show a fourth-order accuracy in our numerical tests.

4. Numerical results

4.1. Accuracy study with 2D linear wave equation

We first test the accuracy of the SD method on the two-dimensional linear wave equation
ou
ot
þ ou

ox
þ ou

oy
¼ 0; �1 6 x 6 1; �1 6 y 6 1;

uðx; y; 0Þ ¼ sin pðxþ yÞ; periodic boundary condition.

ð38Þ
A 10 · 10 · 2 unstructured grid over the square domain (�1 6 x 6 1,�1 6 y 6 1) is shown in Fig. 5. Note that
the cells in the irregular grid have quite different sizes. Five grids of successive refinement were used in the
study. The finer grids were generated recursively by cutting each coarser grid cell into four finer grid cells.
The boundary fluxes on each triangular element’s face were computed using the multi-dimensional Riemann
solver, since this is an exact Riemann solver for the wave equation. This solution is then updated at each time
step using a third-order TVD Runge–Kutta scheme [35]. The numerical simulation was carried until t = 1. In
Fig. 6a, we plot the L1 and L1 error norms using the first to fourth-order SD schemes with the u and F place-
ments given in Figs. 4a, and c, f, and g, respectively. The errors presented in the figure are time step indepen-
dent because the time step Dt was made small enough so that the errors are dominated by the spatial
discretization. It is easily verified from the figure that all schemes are convergent with grid refinement and
the expected orders of accuracy have been achieved. In Fig. 6b, we show the same error norms using the sec-
ond to fourth order SV schemes [41]. It is shown that the SD method has similar errors as the SV method in
this test. The SD method is over twice as fast as the SV method for this case.
Fig. 5. An unstructured grid over a square domain.



Fig. 6. Error norms of various order of accuracy for the 2D linear wave equation at t = 1.0.
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4.2. Burgers’ equation and shock capturing

In this case, we test the accuracy of the SD method on the two-dimensional Burgers’ equation:
ou
ot
þ ou2=2

ox
þ ou2=2

oy
¼ 0; �1 6 x 6 1; �1 6 y 6 1;

uðx; y; 0Þ ¼ 1

4
þ 1

2
sin pðxþ yÞ; periodic boundary condition.

ð39Þ
The test was carried out using the same first to fourth-order SD schemes and the same time integration scheme
on the same grids as used in the previous test. The boundary fluxes on each element’s face were first computed
with the multi-dimensional Riemann solver. We started with a smooth initial solution. Due to the non-linearity
of the Burgers equation, discontinuities will develop in the solution. At t = 0.1, the exact solution is still smooth.
The numerical simulation was therefore carried out until t = 0.1 without the use of limiters. In Fig. 7a, we pres-
ent the L1 and L1 errors of the four SD schemes. All schemes are convergent with grid refinement and the



Fig. 7. Error norms of various order of accuracy for the 2D Burgers’ equation at t = 0.1.
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expected orders of accuracy have been achieved, although there is a slight loss of accuracy in the L1 norm,
probably due to the non-linear nature of the Burgers equation. In Fig. 7b, we also show the same error norms
using the second to fourth-order SV schemes [41]. Again, the SD method has similar errors as the SV method in
this test. We then carried out the test with a different way to compute the boundary fluxes using the one-
dimensional Rusanov or Roe Riemann solver [33,34]. The errors are similar to the previous test with fully upwind
fluxes. At t = 0.45, the exact solution has developed two shock waves, and limiters were then used to handle the
discontinuities. A TVD limiter implemented here is very similar to that for the SV method [41]. The basic idea of
limiter can be described in the following steps:

� Compute the cell averaged state variable �ui for each cell using the volume quadrature rule.
� For each cell, compute the minimum and maximum mean solutions �umin

i ; �umax
i from neighboring cells shar-

ing a node.
� If the reconstructed solution at any of the flux points falls out of the range ½�umin

i ; �umax
i �, the solution is

assumed linear with the following distribution
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uiðrÞ ¼ �ui þ uirui � ðr� rcÞ; ð40Þ

where $ui is the gradient computed at the cell centroid based on the original reconstruction, ui is a scalar
limiter in [0,1]. The limiter is so chosen that the solutions at all flux points are within the range ½�umin

i ; �umax
i �.

This limiter is applied after each solution update.

Shown in Fig. 8 are the exact solution and the numerical solutions with the second, third, and fourth-order
SD schemes using the multi-dimensional Riemann solver on the 40 · 40 · 2 irregular grid. The shock waves
are captured well in all cases.

4.3. Scattering of an electromagnetic plane wave incident on a perfectly conducting cylinder

In order to demonstrate the high accuracy of the method, it was decided in this initial phase to choose prob-
lems for which there exist exact solutions. To this end we solve the Maxwell equations
Fig. 8. Solutions of 2D Burgers’ equation at t = 0.45 (10 contours between �0.25 and 0.75).



Fig. 9. Contour plot of Ez for a plane wave (ka = 5) incident on a perfectly conducting cylinder.
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oD

ot
�r�H ¼ 0; ð41aÞ

oB

ot
þr� E ¼ 0. ð41bÞ
The electric and magnetic flux density vectors (D,B) and the intensity vectors (E,H) are related through the
constitutive relations
D ¼ eE; ð42aÞ
B ¼ lH; ð42bÞ
where e is the permittivity and l is the permeability of the material. Exact solutions exist for plane waves
incident on simple bodies in two and three dimensions. The details of the time integration scheme, Riemann
solver, and non-reflecting boundary procedure used here may be found in [26,28].

For the first test case, we considered a plane wave incident on a perfectly conducting circular cylinder. Cal-
culations were carried out over an unstructured grid consisting of 2024 cells, shown in Fig. 9a. The cylinder is
approximated with a 32-sided polygon. The outer boundary is two radii away from the body surface, with no
Fig. 10. Contour plot of Ez for a plane wave (ka = 10) incident on a perfectly conducting cylinder.
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PML (perfectly matched layer). This gives approximately 30/ka cells per wavelength, or approximately
30

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þ

p
=ka unknowns per wavelength. Here k is the wave number, a is the radius of the cylinder, and

n = p + 1 is the order of the accuracy of the method. The incident wave with ka = 5 is propagating from left
to right. Figs. 9b–f show contour plots of Ez for a TM (transverse magnetic) wave as calculated using the first
to fourth-order SD schemes with the u and F placements given in Figs. 4a, c and e–g. We have also plotted the
exact solution (solid lines) on the same figures for easy comparisons. It is seen that the first-order solution is
very dissipative with this resolution. While both second-order solutions captured all the main features of the
wave, the scheme using the least-squares formulation is more accurate. The third and fourth-order solutions
show an excellent agreement with the exact solution. Similar results were obtained for a TE (transverse elec-
tric) wave also. Figs. 10a–c show the contour plots for a wave with ka = 10 using the second to fourth-order
SD schemes. With the grid resolution per wave length reduced by a factor of 2, the second-order scheme now
is unable to produce an accurate solution. The third-order scheme can still capture the main features of the
wave, but is a little bit too dissipative. Nevertheless, the fourth-order scheme agrees very well with the exact
solution. We next tested the SD schemes on a grid in which the outer boundary is much closer to the body.
Fig. 11a shows a grid consisting of 226 cells with the same resolution, but the outer boundary is only a half
radius away from the body. Numerical solutions of the third and fourth-order SD schemes are plotted in
Fig. 11b and c, respectively. They agree well with the exact solution.
Fig. 11. Contour plot of Ez for a plane wave (ka = 5) incident on a perfectly conducting cylinder.
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5. Concluding remarks

In this paper, we presented a new, high-order, conservative, and efficient method for conservation laws on
unstructured grids. The method combines the best features of structured and unstructured grid methods in
which the structured distribution of discrete variables in each unstructured cell maintains computational effi-
ciency and geometric flexibility. It utilizes the concept of discontinuous and high-order local representations to
achieve conservation and high accuracy. Universal reconstructions are obtained by distributing unknown and
flux points in a geometrically similar manner for all unstructured cells. The flux derivatives needed to update
the conservative unknowns are expressed as universal weighted sums of the fluxes, leading to great computa-
tional efficiency. An important aspect of the method is that the number of Riemann solvers per unknown
decreases as the order of accuracy increases, reducing the cost for higher order. Placements of the unknown
and flux points with various orders of accuracy are given for triangular elements. Accuracy studies of the
method are carried out with the two-dimensional linear wave equation and Burgers’ equation, and each order
of accuracy is numerically verified. Numerical solutions of plane electromagnetic waves incident on perfectly
conducting circular cylinders are presented and compared with the exact solutions to demonstrate the capa-
bility of the method. Excellent agreements have been found. Further improvements include extension to three
dimensions, higher orders of accuracy, curved boundaries, optimization of unknown and flux placements,
implicit time integration, grid and order adaptation, multidimensional limiters and filters, moving grids,
and ultimately to the Euler and Navier–Stokes equations.
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